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1
MULTITHREADED EVENT HANDLING
USING PARTITIONED EVENT
DE-MULTIPLEXERS

BACKGROUND

Many types of server applications and system-level ser-
vices operate according to an event-driven paradigm; in other
words, they monitor for events from one or more event
sources and then process the events using event handling
logic. In recent years, there has been an increasing need to
scale the performance of such applications/services in order
to handle very large numbers of concurrent events. This need,
along with the proliferation of multiprocessor computer sys-
tems, has led many developers to implement multithreading
for parallelizing event processing across multiple threads/
processors.

One common approach for implementing multithreading
in an event-driven application involves reserving a single
thread as a poll thread and a pool of threads as worker threads.
The poll thread monitors for incoming events on all of the
active connections between the application and event sources,
where each active connection is represented by an /O handle
(e.g., a network socket, a file descriptor, etc.). The set of
monitored 1/O handles comprise the poll thread’s poll list.
The poll thread typically implements this monitoring func-
tionality using an event de-multiplexer, such as the select( ) or
poll( ) system call available in UNIX. When the poll thread
detects an event via the event de-multiplexer, the poll thread
reads the event from its corresponding I/O handle and sched-
ules a task to be performed for the event in a task queue. One
of'the worker threads thereafter picks up the task from the task
queue and processes the task using an appropriate event han-
dler.

While the foregoing approach is functional, it also suffers
from a number of inefficiencies and disadvantages. First,
traditional event de-multiplexers (e.g., the UNIX select( ) and
poll( ) system calls) generally do not scale well with the
number of concurrent I/O handles being monitored. Thus, if
the size of'the poll thread’s poll list grows to be very long, the
poll thread can become a bottleneck for overall application
throughput and performance. Second, multiple worker
threads may require access to the same resource (e.g., file,
database table, etc.) simultaneously. This may occur if, for
example, back-to-back tasks in the task queue require invo-
cation of the same event handler. To account for this, the
application developer must write synchronization code in
order to avoid resource deadlocks and race conditions
between worker threads, which significantly complicates
application design and testing. Third, threads tend to block on
synchronization primitives. This means that, in order to avoid
running out of free worker threads (which are synchronized as
mentioned above), the worker thread pool size must be fairly
large. This, in turn, can lead to reduced performance due to
context switching, cache thrashing, and other problems that
occur when a large number of threads are constantly loaded
and unloaded on a smaller number of processors.

SUMMARY

Techniques for handling events are provided. In one
embodiment, a computer system can create a plurality of I/O
handles for receiving events. The computer system can fur-
ther partition the plurality of /O handles into one or more
subsets, where events received via I/O handles in the same
subset are correlated and events received via I/O handles in
different subsets are uncorrelated. The computer system can
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then delegate each I/O handle in the plurality of I/O handles to
a poll thread in a plurality of poll threads, where /O handles
in the same subset are delegated to the same poll thread.

The following detailed description and accompanying
drawings provide a better understanding of the nature and
advantages of particular embodiments.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 depicts a system environment according to an
embodiment.

FIG. 2 depicts a flow for initializing an event-driven appli-
cation according to an embodiment.

FIG. 3 depicts a flow for processing new connection
requests from event sources according to an embodiment.

FIG. 4 depicts a first flow for monitoring/processing events
according to an embodiment.

FIG. 5 depicts a second flow for monitoring/processing
events according to an embodiment.

FIG. 6 depicts a flowchart that provides additional details
regarding the flow of FIG. 3 according to an embodiment.

FIG. 7 depicts a flowchart that provides additional details
regarding the flows of FIGS. 4 and 5 according to an embodi-
ment.

FIG. 8 depicts a flow for performing load balancing across
poll threads according to an embodiment.

FIG. 9 depicts an exemplary event handling system accord-
ing to an embodiment.

DETAILED DESCRIPTION

In the following description, for purposes of explanation,
numerous examples and details are set forth in order to pro-
vide an understanding of various embodiments. It will be
evident, however, to one skilled in the art that certain embodi-
ments can be practiced without some of these details, or can
be practiced with modifications or equivalents thereof.

The present disclosure describes an improved framework
for performing multithreaded event handling. In one embodi-
ment, an event-driven application running on a computer
system can create a plurality of poll threads, where the num-
ber of poll threads is related to the number of available pro-
cessors in the computer system. For instance, the event-driven
application can create one poll thread per available processor,
two poll threads per available processor, or the like. Each poll
thread can execute its own instance of an event de-multi-
plexer.

When the event-driven application receives a connection
request from an event source, the event-driven application can
create an I/O handle for the connection and classify the I/O
handle according to one or more preconfigured rules. This
classification can identify the I/O handle as being part of a
particular subset of the total set of I/O handles created by the
event-driven application, such that (1) events received via [/O
handles in the same subset are correlated from a synchroni-
zation perspective (and thus would likely require synchroni-
zation if processed concurrently by different threads) and (2)
events received via I/O handles in different subsets are uncor-
related from a synchronization perspective (and thus would
not require, or require less, synchronization).

Upon classifying the I/O handle, the event-driven applica-
tion can delegate the I/O handle to a selected poll thread in the
plurality of poll threads. The event-driven application can
perform this step in a manner that causes all of the I/O handles
in the same subset to be delegated to the same poll thread. For
example, the event-driven application can delegate all 1/O
handles in subset A to a first poll thread T1, all I/O handles in
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subset B to a second poll thread T2, and so on. The selected
poll thread can then monitor for events received via the I/O
handle using the poll thread’s event de-multiplexer and pro-
cess the events using one or more event handlers.

With the framework above, many of the issues associated
with existing multithreaded event handling approaches can be
mitigated or avoided. For instance, since the event-driven
application delegates I/O handles to poll threads based on
subset membership (which is, in turn, based on the degree of
correlation between 1/0 handles/events), the event handling
performed by each poll thread can be largely independent
from the event handling performed by other poll threads. This
minimizes, or in some cases eliminates, the need for applica-
tion-level synchronization between threads.

Further, because I/O handles are partitioned across mul-
tiple poll threads (rather than being monitored by a single poll
thread), the poll list of each poll thread can be kept relatively
short. This prevents performance bottlenecks that may arise
due to overloading a single event de-multiplexer/poll thread
with a very long poll list.

Yet further, since the number of poll threads that the event-
driven application creates is tied to the number of available
processors in the host computer system, the application can
scale in performance as additional processors are added or
made available. This tight coupling between poll thread count
and available processor count also allows for higher per-
processor utilization while reducing the amount of perfor-
mance loss/overhead incurred due to cache thrashing and
context switching.

FIG. 1 depicts a system environment 100 that supports
multithreaded event handling according to an embodiment.
As shown, system environment 100 includes a computer sys-
tem 102 that comprises a plurality of processors 104(1)-104
(K) and an event-driven application 106. Each processor 104
(1)-104(K) can be a physical processing unit (e.g., a physical
CPU or a physical core within a multi-core CPU) or a virtual
processing unit (e.g., a virtual CPU in a virtual machine).
Event-driven application 106 can be any type of software that
monitors for and processes events, such as a web server, a
database server, a system-level event handling service, or the
like.

In operation, event-driven application 106 can receive con-
nection requests from one or more event sources 108(1)-108
(N). In the embodiment of FIG. 1, event sources 108(1)-108
(N) are depicted as entities that are external to computer
system 102, such as client devices that communicate with
computer system 102 over a network. In alternative embodi-
ments, one or more of event sources 108(1)-108(N) may be
internal to computer system 102, such as a software applica-
tion or resource available on system 102.

In response to receiving the connection requests, event-
driven application 106 can create a plurality of I/O handles
110(1)-110(M) (e.g., one I/O handle per connection request).
Each I/O handle 110(1)-110(M) can represent an interface
(e.g., a network socket, file descriptor, etc.) for receiving data
from, and transmitting data to, a connected event source 108
(1)-108(N). Event-driven application 106 can thereafter
monitor I/O handles 110(1)-110(M) for incoming events
from the connected event sources and process the events
using one or more event handlers (not shown).

As noted in the Background section, many existing event-
driven applications implement multithreading to take advan-
tage of multiple processors, but rely on a “single poll thread/
multiple worker threads™ approach that suffers from various
limitations (e.g., poll thread bottlenecking, need for complex
synchronization between worker threads, excessive context
switching/cache thrashing due to large thread pool size, etc.).
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To address these and other similar issues, event-driven appli-
cation 106 can implement a multithreaded framework that
employs a listener/partitioner 112 and multiple poll threads
114(1)-114(K). As described in further detail below, listener/
partitioner 112 and poll threads 114(1)-114(K) can interop-
erate in a manner that enables event-driven application 106 to
scale in throughput/performance as the number of processors
104(1)-104(K) grows, without incurring the costs and ineffi-
ciencies of prior art multithreaded approaches.

FIG. 2 depicts a flow 200 that can be performed by event-
driven application 106 of FIG. 1 for initializing listener/par-
titioner 112 and poll threads 114(1)-114(K) according to an
embodiment. In one embodiment, event-driven application
106 can perform flow 200 upon application startup.

At step (1) of flow 200 (reference numeral 202), event-
driven application 106 can create poll threads 114(1)-114(K)
(and optionally, listener/partitioner 112) as distinct threads
within the process space of application 106. In cases where
listener/partitioner 112 is not assigned its own thread, the
functionality of listener/partitioner 112 can be subsumed by a
designated poll thread. Each poll thread 114(1)-114(K) can
execute an instance of an event de-multiplexer 208(1)-208
(K), which is an OS-level function that waits for events to
arrive on a set of I/O handles and signals its caller when one
or more events are received. The set of /O handles monitored
by each event de-multiplexer is referred to as a poll list (210
(1)-210(K)). Examples of well-known event de-multiplexers
include the select( ) and poll( ) functions in UNIX and the
WaitForMultipleObjects( ) function in Windows.

Each poll thread 114(1)-114(K) can also include one or
more event handlers 212(1)-212(K) that allow the poll thread
to process events that are detected via its respective event
de-multiplexer. Thus, unlike the “single poll thread/multiple
worker threads” approach where the single poll thread is
solely responsible for monitoring for events, poll threads
114(1)-114(K) of FIG. 1 can both monitor for and process
events. The event processing flow(s) that can be carried out by
poll threads 114(1)-114(K) are described with respect to
FIGS. 4, 5, and 7 below.

As part of the thread creation process of step (1), event-
driven application 106 can limit the number of poll threads
that are created based on the number of available processors
in computer system 106. For instance, in FIGS. 1 and 2, there
is a 1:1 ratio of poll threads to processors (K poll threads to K
processors). In other embodiments, there may be a moder-
ately greater or fewer number of poll threads to processors
(e.g., 0.5:1, 1.5:1, 2:1, etc.). This relatively tight coupling
between poll thread count and available processor count
reduces the likelihood that poll threads 114(1)-114(K) will
need to be loaded and unloaded from processors 104(1)-104
(K) on a frequent basis, and thus minimizes the performance
loss associated with context switching and cache thrashing at
the processor level.

At step (2) (reference numeral 204), event-driven applica-
tion 106 can bind each poll thread 114(1)-114(K) to a par-
ticular processor 104(1)-104(K), such that the poll threads are
relatively evenly distributed across the processors. For
example, event-driven application 204 can bind each poll
thread 114(1)-114(K) to a separate processor. In some
embodiments, this binding can be performed at the OS (rather
than application) level by, e.g., an OS thread scheduler, in
which case step (2) may be omitted from flow 200.

Finally, at step (3) (reference numeral 206), listener/parti-
tioner 112 can begin listening for new connection requests
from one or more event sources (e.g., event sources 108(1)-
108(N) of FIG. 1).
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FIG. 3 depicts a flow 300 that can be performed by listener/
partitioner 112 (after flow 200 of FIG. 2) for processing new
connection requests from event sources 108(1)-108(N)
according to an embodiment. At step (1) of flow 300 (refer-
ence numeral 302), listener/partitioner 112 can receive a new
connection request from, e.g., event source 108(1). In
response, listener/partitioner 112 can accept the connection
request and create a corresponding 1/O handle 110(1) (step
(2), reference numeral 304). As noted previously, [/O handle
110(1) is an interface, such as a network socket or a file
descriptor, that allows event-driven application 106 to receive
and transmit data to/from event source 108(1).

At step (3) (reference numeral 306), listener/partitioner
112 can identify newly created 1/O handle 110(1) as being
part of a particular subset of the total set of I/O handles
created by event-driven application 106. For example, /O
handles 110(1)-110(M) may be divided into subsets A, B, and
C, and I/O handle 110(1) may be identified as being part of
subset A. Generally speaking, the subsets can be defined such
that events received via I/O handles in the same subset are
correlated from a synchronization perspective (and thus
would likely require synchronization if handled concurrently
by different threads), whereas events received via I/O handles
in different subsets are uncorrelated from a synchronization
perspective (and thus would not require, or require less, syn-
chronization). As a result, these subsets can essentially reflect
the degree of independence (or interdependence) between I/O
handles/events.

In certain embodiments, the specific subset definitions that
listener/partitioner 112 uses to drive the identification at step
(3) may be preconfigured (e.g., defined by a human or auto-
mated agent), and may vary depending on the nature of event-
driven application 106. This is because different types of
applications may require different subset definitions in order
to successfully group together correlated /O handles/events.
For example, consider a scenario where event-driven appli-
cation 106 is a web service that serves HT'TP sessions for
different users. In this scenario, events generated or con-
sumed by the same user of the web service will likely be
correlated. On the other hand, events generated or consumed
by different users will likely be loosely correlated, or may not
be correlated at all. Thus, for this type of application, the I/O
handle subsets may be defined on a user basis, such that I/O
handles pertaining to the same user are considered part of the
same subset.

As another example, consider a scenario where event-
driven application 106 is a resource controller than manages
access to a number of different physical or virtual resources.
In this scenario, events (e.g., reads or writes) destined for the
same resource will be highly correlated, whereas events des-
tined for different resources will be largely uncorrelated.
Thus, for this type of application, the I/O handle subsets may
be defined on a resource basis, such that /O handles pertain-
ing to the same resource are considered part of the same
subset.

Once [/0 handle 110(1) has been identified as being part of
a subset per step (3), listener/partitioner 112 can delegate I/O
handle 110(1) to a selected poll thread (e.g., 114(1)) in the
pool of poll threads 114(1)-114(K) (step (4), reference
numeral 308). As part of this step, listener/partitioner 112 can
send a message to selected poll thread 114(1) that causes the
poll thread’s event de-multiplexer 208(1) to register 1/O
handle 110(1), resulting in the creation of a pointer to I/O
handle 110(1) (i.e., /O handle pointer 310) in the event de-
multiplexer’s poll list 210(1).

Significantly, listener/partitioner 112 can perform the del-
egation of step (4) in manner that causes all I/O handles in the
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same subset to be delegated to the same poll thread. Thus, in
the example of FIG. 3, listener/partitioner 112 has essentially
selected poll thread 114(1) as the “dedicated” poll thread for
all I/O handles in the same subset of /O handle 110(1); any
future I/O handles in this subset will be delegated to poll
thread 114(1). Since I/O handles across different subsets are
uncorrelated from a synchronization perspective, this map-
ping of 1/O handle subsets to specific poll threads can mini-
mize, or eliminate, the need for synchronization across poll
threads. In some embodiments, listener/partitioner 112 may
map a single I/O handle subset to a single poll thread. In other
embodiments, in order to keep the total number of poll
threads low, listener/partitioner 112 may map multiple I/O
handle subsets to one poll thread.

After step (4), flow 300 can return to step (1) so that
listener/partitioner 112 can process additional connection
requests as they arrive. The effect of this repeated process is
that newly created I/O handles will be partitioned across event
de-multiplexers 208(1)-208(K) of poll threads 114(1)-114
(K) in a non-overlapping manner (per the subset rules
described above). Upon being delegated an /O handle, each
poll thread can perform the dual functions of monitoring for
and processing events received via the I/O handle.

FIG. 4 depicts a flow 400 that can be performed by poll
thread 114(1) (after flow 300 of FIG. 3) for monitoring and
processing events on I/O handle 110(1) according to an
embodiment. At step (1) of flow 400 (reference numeral 402),
event de-multiplexer 208(1) of poll thread 114(1) can wait for
events to be received on 1/O handle 110(1) (via I/O handle
pointer 310). After some period of time, event de-multiplexer
208(1) can trigger a signal (e.g., a callback) indicating that an
event has been received (step (2), reference numeral 404).

In response to the signal, poll thread 114(1) can read the
event from I/O handle 110(1) (step (3), reference numeral
406). Poll thread 114(1) can then invoke an appropriate event
handler 212(1) for processing the event and thereafter return
to step (1) to monitor for additional events.

As noted above with respectto FIG. 3, the event processing
that is performed by poll thread 114(1) will generally be
independent of the event processing that is concurrently per-
formed by other poll threads 114(2)-114(K) of event-driven
application 106. This is because each poll thread is respon-
sible for a distinct, non-overlapping subset of /O handles that
has a relatively high degree of correlation within the subset,
but a relatively low (or non-existent) degree of correlation
across subsets. As a result, there is little (or no) need for
synchronization primitives in the event handling logic of
event handler 212(1), thereby simplifying application design
and testing. Further, since each poll thread is responsible for
both monitoring for and processing events, there is no sepa-
rate pool of worker threads to delegate the handling of events,
which eliminates the need for synchronization among differ-
ent event handlers within a given poll thread.

In most cases, poll thread 114(1) can perform steps (3) and
(4) in flow 400 asynchronously. However, in some situations,
poll thread 114(1) may need to handle a synchronous I/O
event (e.g., an event that requires a blocking read before it can
be processed), which can cause bottlenecking and processor
under-utilization. To address this, FIG. 5 depicts a flow 500
that poll thread 114(1) can implement in lieu of flow 400 for
processing a synchronous 1/O event.

Steps (1) and (2) of flow 500 (reference numerals 502 and
504) are substantially similar to steps (1) and (2) of flow 400
(e.g., event-de-multiplexer 208(1) waits for events on 1/O
handle 110(1) and triggers a signal when an event is received).
At block 506, poll thread 114(1) can detect the signal and
determine that the received event is a synchronous I/O event.
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Poll thread 114(1) can then spawn and invoke a helper thread
516 for handling the event (rather than handling the event
completely within poll thread 114(1)). Since helper thread
516 can operate concurrently with poll thread 114(1), poll
thread 114(1) is free to return to step (1) at this point and
monitor for/process additional events.

At step (5) (reference numeral 510), helper thread 516 can
perform a blocking read in order to read the synchronous I/O
event from I/O handle 110(1). Once the read is complete,
helper thread 516 can process the event (via event handler
518) and post the results of the processing back to poll thread
114(1) (step (6), reference numeral 512).

Atstep (7) (reference numeral 514), flow 700 can return to
poll thread 114(1), which can receive the results generated by
helper thread 516 and perform continuation processing on the
results, if needed, using event handler 212(1). Poll thread
114(1) can thereafter return again to the wait state of (1) to
monitor for/process additional events.

FIG. 6 depicts a flowchart 600 that provides additional
details regarding the connection request processing that is
performed by listener/partitioner 112 in flow 300 of FIG. 3
according to an embodiment. At blocks 602 and 604, listener/
partitioner 112 can execute a loop for listening for new con-
nection requests from event sources 108(1)-108(N). If a new
connection request is received, listener/partitioner 112 can
accept the request and create a new I/O handle (e.g., 110(1))
for the connection (block 606).

At block 608, listener/partitioner 112 can identity, based
on one or more preconfigured rules (e.g., subset definitions),
newly created 1/O handle 110(1) as being part of a particular
I/0 handle subset. In one embodiment, the subsets can be
defined based on an aspect or characteristic of the event
sources (e.g., user identity, client device identity, etc.). In
another embodiment, the subsets can be defined based on an
aspect or characteristic of a backend resource (e.g., a file,
database, etc.). In yet other embodiments, the subsets can be
based on any other criterion that allows 1/O handles to be
grouped together based on the degree of correlation (from a
synchronization perspective) between their respective events.
One of ordinary skill in the art will appreciate many varia-
tions, modifications, and alternatives for defining the I/O
handle subsets.

Once [/0 handle 110(1) has been identified as being part of
a particular subset, listener/partitioner 112 can determine
whether I/O handles for the subset have already been del-
egated to a poll thread (block 610). If so, listener/partitioner
112 can delegate 1/O handle 110(1) to the same poll thread,
thereby ensuring that all I/O handles in the same subset are
processed together (i.e., by a single poll thread) (block 612).

On the other hand, if I/O handles for the subset have not
already been delegated to a poll thread, listener/partitioner
112 can select a poll thread from the pool of poll threads
114(1)-114(K) and delegate I/O handle 110(1) to the selected
poll thread (block 614). Any new /O handles that are in the
same subset as I/O handle 110(1) will thereafter be delegated
to the poll thread selected at block 614.

In certain embodiments, listener/partitioner 112 can per-
form the poll thread selection at block 614 using a basic
round-robin scheduling algorithm. For example, listener/par-
titioner 112 can assign an order to poll threads 114(1)-114(K)
and delegate new 1/0 handles to poll threads according to that
order. In other embodiments, listener/partitioner 112 can
implement more sophisticated scheduling algorithms. For
instance, in a particular embodiment, listener/partitioner 112
can continuously monitor the load of each poll thread 114(1)-
114(K) using one or more metrics (e.g., poll list length, pro-
cessor utilization, etc.). Listener/partitioner 112 can then
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select a poll thread at block 614 that it determines to have the
lightest load. This load balancing approach can more evenly
distribute work among poll threads 114(1)-114(K) than the
round-robin approach noted above.

After delegating I/O handle 110(1) to a poll thread per
block 612 or block 614, listener/partitioner 112 can return to
block 602 in orderto listen for additional connection requests.
This process can repeat until, e.g., event-driven application
106 is terminated.

FIG. 7 depicts a flowchart 700 that provides additional
details regarding the event monitoring/processing that is per-
formed by poll thread 114(1) in flows 400 and 500 of FIGS. 4
and 5 according to an embodiment. Flowchart 700 can be
performed by poll thread 114(1) after it has been delegated
1/0 handle 110(1) per block 612 and/or 614 of FIG. 6. At
blocks 702 and 704, poll thread 114(1) can enter a loop to
monitor for events on the /O handles in its poll list (e.g., /O
handle 110(1)). If an event is received, poll thread 114(1) can
determine whether the event is a synchronous I/O event
(block 706). If not, poll thread 114(1) can read the event from
its corresponding I/O handle (block 708), invoke an event
handler to process the event (710), and return to block 702 to
monitor for additional events.

On the other hand, if the received event is a synchronous
1/O eveant, poll thread 114(1) can spawn and invoke a helper
thread (e.g., helper thread 516) to handle the event (block
712). Since helper thread 516 can run concurrently with poll
thread 114(1), poll thread 114(1) can return to block 702 at
this point. Helper thread 516 can read the synchronous I/O
event from its corresponding I/O handle using, e.g., a block-
ing call (block 714) and invoke an event handler to process the
event (block 716). Helper thread 516 can then transmit the
results of the processing back to poll thread 114(1) (block
718).

At block 720, poll thread 114(1) can receive the results
from helper thread 516 and perform continuation processing
on the event if needed. Poll thread 114(1) can then return to
the monitoring loop of blocks 702 and 704.

Although not shown in FIG. 7, in some situations poll
thread 114(1) (and/or helper thread 516) may need to com-
municate with other poll threads in event-driven application
106 as part of the event processing performed at blocks 710/
716. For example, assume that event-driven application 106 is
a VM management service and that poll threads 114(1)-114
(K) are delegated I/0 handle subsets that pertain to individual
VMs. In this example, the event handler for one VM (which
delegated to, e.g., poll thread 114(1)) may need access to data
in a virtual disk owned by another VM (which is delegated, to,
e.g., poll thread 114(2)).

To handle these situations without incurring significant
synchronization costs, event-driven application 106 can
implement an inter-poll thread communication mechanism.
This mechanism can enable, e.g., poll thread 114(1) to trans-
mit a message to a second poll thread 114(2)-114(K) in order
to request information that is managed by the second poll
thread. The second poll thread can then send a reply message
to poll thread 114(1) with the requested information. In cer-
tain embodiments, this messaging mechanism can include a
query service that poll threads 114(1)-114(K) can invoke to
help identify a correct messaging target based on one or more
query criteria.

As described above with respect to FIG. 6, listener/parti-
tioner 112 can, in some cases, implement a load balancing
approach at the time of delegating new I/O handles to poll
threads in order to more evenly distribute work. However,
certain I/O handles that have already been delegated to a poll
thread may receive a large volume of events that overload the
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poll thread over time, thereby disrupting the work distribution
that was determined at the time of delegation. To address this,
FIG. 8 depicts a flow 800 for dynamically re-allocating 1/O
handles among poll threads according to an embodiment.

At block 802, listener/partitioner 112 can continuously
monitor the loads of poll threads 114(1)-114(K) during the
operation of event-driven application 106. For example, lis-
tener/partitioner 112 can monitor each poll thread’s poll list
length, processor utilization, or the like.

At blocks 804 and 806, listener/partitioner 112 can deter-
mine that one poll thread (e.g., 114(1)) is overloaded, while
another poll thread (e.g., 114(2)) is under-loaded. As a result,
listener/partitioner 112 can transmit a message to overloaded
poll thread 114(1) with instructions to migrate one or more
subsets of 1/O handles to under-loaded poll thread 114(2)
(block 808).

Atblock 810, overloaded poll thread 114(1) can receive the
message and select one or more I/O handles for migration.
Generally speaking, overloaded poll thread 114(1) will select
entire I/O handle subsets at this step, since this will ensure
that there is no need for synchronization between poll thread
114(1) and the migration target (poll thread 114(2)).

Atblock 812, overloaded poll thread 114(1) can de-register
the selected I/0 handles from its event de-multiplexer 208(1)
and transmit a message to under-loaded poll thread 114(2)
identifying the I/O handles. In response, under-loaded poll
thread 114(2) can register the /O handles with its own event
de-multiplexer 208(2) and thereby take over responsibility
for those handles (block 814).

FIG. 9 depicts an exemplary event handling system 900
that implements a number ofthe concepts described above. In
the embodiment of FIG. 9, the event-driven application is a
host proxy service 902 that resides within a hypervisor (ESX
904). Host proxy service 902 receives connection requests
from event sources (AMQP clients 906) executing within
VMs 908. As shown, there are M AMQP clients per VM and
1000 VMs total, resulting in Mx1000 event sources. Host
proxy service 902 then creates 1/O handles for the connec-
tions and partitions the I/O handles across N poll threads 910
according to the techniques described with respect to FIGS.
2-8 above. Each poll thread is configured to monitor for and
process events receive via its delegated I/O handles. As part of
this event processing, each poll thread establishes an SSL
connection to a messaging server (AMQP server 912) run-
ning in a management VM (VP Ops VM 914) and transmits
data over the connection. The data can then be consumed by
one or more AMQP clients 916 in the management VM.

Note that, in the embodiment of FIG. 9, there is no separate
listener/partitioner component within host proxy service 902.
This is because the functionality of the listener/partitioner is
assigned to one of the poll threads 910. In alternative embodi-
ments, the listener/partitioner can be assigned its own dedi-
cated thread.

The various embodiments described herein may employ
various computer-implemented operations involving data
stored in computer systems. For example, these operations
may require physical manipulation of physical quantities—
usually, though not necessarily, these quantities may take the
form of electrical or magnetic signals, where they or repre-
sentations of them are capable of being stored, transferred,
combined, compared, or otherwise manipulated. Further,
such manipulations are often referred to in terms, such as
producing, identifying, determining, or comparing. Any
operations described herein that form part of one or more
embodiments may be useful machine operations. In addition,
one or more embodiments also relate to a device or an appa-
ratus for performing these operations. The apparatus may be
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specially constructed for specific required purposes, or it may
be a general purpose computer selectively activated or con-
figured by a computer program stored in the computer. In
particular, various general purpose machines may be used
with computer programs written in accordance with the
teachings herein, or it may be more convenient to construct a
more specialized apparatus to perform the required opera-
tions. The various embodiments described herein may be
practiced with other computer system configurations includ-
ing hand-held devices, microprocessor systems, micropro-
cessor-based or programmable consumer electronics, mini-
computers, mainframe computers, and the like.

One or more embodiments may be implemented as one or
more computer programs or as one or more computer pro-
gram modules embodied in one or more non-transitory com-
puter readable storage media. The term non-transitory com-
puter readable storage medium refers to any data storage
device that can store data which can thereafter be input to a
computer system. The non-transitory computer readable
media may be based on any existing or subsequently devel-
oped technology for embodying computer programs in a
manner that enables them to be read by a computer. Examples
of'a non-transitory computer readable medium include a hard
drive, network attached storage (NAS), read-only memory,
random-access memory (e.g., a flash memory device), a CD
(Compact Disc)—CD-ROM, a CD-R, or a CD-RW, a DVD
(Digital Versatile Disc), a magnetic tape, and other optical
and non-optical data storage devices. The non-transitory
computer readable medium can also be distributed over a
network coupled computer system so that the computer read-
able code is stored and executed in a distributed fashion.

In addition, while described virtualization methods have
generally assumed that virtual machines present interfaces
consistent with a particular hardware system, persons of ordi-
nary skill in the art will recognize that the methods described
may be used in conjunction with virtualizations that do not
correspond directly to any particular hardware system. Virtu-
alization systems in accordance with the various embodi-
ments, implemented as hosted embodiments, non-hosted
embodiments or as embodiments that tend to blur distinctions
between the two, are all envisioned. Furthermore, various
virtualization operations may be wholly or partially imple-
mented in hardware.

Many variations, modifications, additions, and improve-
ments are possible, regardless the degree of virtualization.
The virtualization software can therefore include components
of a host, console, or guest operating system that performs
virtualization functions. Plural instances may be provided for
components, operations or structures described herein as a
single instance. Finally, boundaries between various compo-
nents, operations and data stores are somewhat arbitrary, and
particular operations are illustrated in the context of specific
illustrative configurations. Other allocations of functionality
are envisioned and may fall within the scope of the inven-
tion(s). In general, structures and functionality presented as
separate components in exemplary configurations may be
implemented as a combined structure or component. Simi-
larly, structures and functionality presented as a single com-
ponent may be implemented as separate components.

Asused in the description herein and throughout the claims
that follow, “a,” “an,” and “the” includes plural references
unless the context clearly dictates otherwise. Also, as used in
the description herein and throughout the claims that follow,
the meaning of “in” includes “in”” and “on” unless the context
clearly dictates otherwise.

The above description illustrates various embodiments
along with examples of how aspects of particular embodi-
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ments may be implemented. The above examples and
embodiments should not be deemed to be the only embodi-
ments, and are presented to illustrate the flexibility and advan-
tages of particular embodiments as defined by the following
claims. Based on the above disclosure and the following
claims, other arrangements, embodiments, implementations
and equivalents may be employed without departing from the
scope hereof as defined by the claims.

What is claimed is:

1. A method for handling events, the method comprising:

creating, by a computer system, a plurality of /O handles

for receiving events;

partitioning, by the computer system, the plurality of I/O

handles into one or more subsets, wherein the partition-
ing causes correlated 1/0 handles in the plurality of /O
handles to be placed in the same subset, the correlated
1/0 handles being configured to receive events that, if
handled concurrently by different poll threads in a plu-
rality of poll threads, would require event handling syn-
chronization across at least a portion of the different poll
threads; and

delegating, by the computer system, each I/O handle in the

plurality of /O handles to a poll thread in the plurality of
poll threads, wherein I/O handles in the same subset are
delegated to the same poll thread.

2. The method of claim 1 wherein the number of poll
threads is related to a number of available processors in the
computer system.

3. The method of claim 1 wherein the delegating com-
prises:

causing the 1/0 handle to be registered with an event de-

multiplexer running within the poll thread.

4. The method of claim 3 further comprising, by the poll
thread:

detecting, using the event de-mutliplexer, an event received

via the I/O handle;

if the event is an asynchronous /O event, reading and

processing the event; and

if the event is a synchronous I/O event, spawning a helper

thread to read and process the event.

5. The method of claim 4 wherein processing the event
comprises:

determining that the processing requires information

accessible by another poll thread; and

transmitting a message directly to said another poll thread

for requesting the information.

6. The method of claim 1 wherein the plurality of 1/O0
handles are partitioned into the one or more subsets based on
an event source of each I/O handle or a resource accessed by
the events received via each 1/O handle.

7. The method of claim 1 further comprising:

monitoring one or more load metrics for each of the plu-

rality of poll threads;

identifying an overloaded poll thread;

identifying an under-loaded poll thread; and

instructing the overloaded poll thread to migrate one or

more subsets of [/O handles to the under-loaded poll
thread.

8. The method of claim 1 wherein the partitioning further
causes uncorrelated I/O handles in the plurality of I/O handles
to be placed in different subsets, the uncorrelated I/O handles
being configured to receive events that, if handled concur-
rently by different poll threads in a plurality of poll threads,
would not require event handling synchronization across the
different poll threads.
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9. The method of claim 1 wherein the correlated I/O
handles are configured to receive write requests that are
directed to a common data resource.

10. The method of claim 1 wherein the event handling
synchronization comprises implementation of a synchroniza-
tion primitive in event handling logic of each of the different
poll threads to avoid resource deadlocks or race conditions.

11. A non-transitory computer readable storage medium
having stored thereon software executable by a computer
system, the software embodying a method for handling
events comprising:

creating a plurality of I/O handles for receiving events;

partitioning the plurality of 1/O handles into one or more

subsets, wherein the partitioning causes correlated 1/O
handles in the plurality of I/O handles to be placed in the
same subset, the correlated I/O handles being configured
to receive events that, if handled concurrently by differ-
ent poll threads in a plurality of poll threads, would
require event handling synchronization across at least a
portion of the different poll threads; and

delegating each I/O handle in the plurality of I/O handles to

apoll thread in the plurality of poll threads, wherein /O
handles in the same subset are delegated to the same poll
thread.

12. The non-transitory computer readable storage medium
of claim 11 wherein the number of poll threads is related to a
number of available processors in the computer system.

13. The non-transitory computer readable storage medium
of claim 11 wherein the delegating comprises:

causing the I/O handle to be registered with an event de-

multiplexer running within the poll thread.

14. The non-transitory computer readable storage medium
of'claim 13 wherein the method further comprises, by the poll
thread:

detecting, using the event de-mutliplexer, an event received

via the I/O handle;

if the event is an asynchronous 1/O event, processing the

event; and

if the event is a synchronous I/O event, spawning a helper

thread to process the event.

15. The non-transitory computer readable storage medium
of claim 14 wherein processing the event comprises:

determining that the processing requires information

accessible by another poll thread; and

transmitting a message directly to said another poll thread

for requesting the information.

16. The non-transitory computer readable storage medium
of claim 8 wherein the plurality of I/O handles are partitioned
into the one or more subsets based on an event source of each
1/0 handle or a resource accessed by the events received via
each I/O handle.

17. The non-transitory computer readable storage medium
of claim 8 wherein the method further comprises:

monitoring one or more load metrics for each of the plu-

rality of poll threads;

identifying an overloaded poll thread;

identifying an under-loaded poll thread; and

instructing the overloaded poll thread to migrate one or

more subsets of 1/O handles to the under-loaded poll
thread.

18. The non-transitory computer readable storage medium
of claim 11 wherein the partitioning further causes uncorre-
lated I/O handles in the plurality of I/O handles to be placed
in different subsets, the uncorrelated I/O handles being con-
figured to receive events that, if handled concurrently by
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different poll threads in a plurality of poll threads, would not
require event handling synchronization across the different
poll threads.

19. The non-transitory computer readable storage medium
of claim 11 wherein the correlated /O handles are configured
to receive write requests that are directed to a common data
resource.

20. The non-transitory computer readable storage medium
of claim 11 wherein the event handling synchronization com-
prises implementation of a synchronization primitive in event
handling logic of each of the different poll threads to avoid
resource deadlocks or race conditions.

21. A computer system comprising:

a plurality of processors; and

a non-transitory data store having stored thereon program

code which, when executed by one or more of the plu-

rality of processors, causes the one or more processors

to:

create a plurality of I/O handles for receiving events;

partition the plurality of I/O handles into one or more
subsets, wherein the partitioning causes correlated
I/Ohandles in the plurality of I/O handles to be placed
in the same subset, the correlated /O handles being
configured to receive events that, if handled concur-
rently by different poll threads in a plurality of poll
threads, would require event handling synchroniza-
tion across at least a portion of the different poll
threads; and

delegate each 1/O handle in the plurality of /O handles
to a poll thread in a plurality of poll threads, wherein
1/0 handles in the same subset are delegated to the
same poll thread.

22. The system of claim 21 wherein the number of poll
threads is related to a number of available processors in the
plurality of processors.

23. The system of claim 21 wherein the delegating com-
prises:

causing the 1/0 handle to be registered with an event de-

multiplexer running within the poll thread.

24. The system of claim 23 wherein the program code
further causes a processor executing the poll thread to:
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detect, using the event de-mutliplexer, an event received

via the I/O handle;

ifthe event is an asynchronous I/O event, process the event;

and

if the event is a synchronous 1/O event, spawn a helper

thread to process the event.

25. The system of claim 24 wherein processing the event
comprises:

determining that the processing requires information

accessible by another poll thread; and

transmitting a message directly to said another poll thread

for requesting the information.

26. The system of claim 21 wherein the plurality of I/O
handles are partitioned into the one or more subsets based on
an event source of each I/O handle or a resource accessed by
the events received via each 1/O handle.

27. The system of claim 21 wherein the program code
further causes the one or more processors to:

monitor one or more load metrics for each of the plurality

of poll threads;

identify an overloaded poll thread;

identify an under-loaded poll thread; and

instruct the overloaded poll thread to migrate one or more

subsets of /O handles to the under-loaded poll thread.

28. The computer system of claim 21 wherein the parti-
tioning further causes uncorrelated I/O handles in the plural-
ity of I/O handles to be placed in different subsets, the uncor-
related I/O handles being configured to receive events that, if
handled concurrently by different poll threads in a plurality of
poll threads, would not require event handling synchroniza-
tion across the different poll threads.

29. The computer system of claim 21 wherein the corre-
lated I/O handles are configured to receive write requests that
are directed to a common data resource.

30. The computer system of claim 21 wherein the event
handling synchronization comprises implementation of a
synchronization primitive in event handling logic of each of
the different poll threads to avoid resource deadlocks or race
conditions.



